Predicting Fault-prone Software Module Using Data Mining Technique and Fuzzy Logic
نویسندگان
چکیده
-This paper discusses a new model towards reliability and quality improvement of software systems by predicting fault-prone module before testing. Model utilizes the classification capability of data mining techniques and knowledge stored in software metrics to classify the software module as fault-prone or not fault-prone. A decision tree is constructed using ID3 algorithm for existing project data in order to gain information for the purpose of decision making whether a particular module id fault-prone or not. The gained information is converted into fuzzy rules and integrated with fuzzy inference system to predict fault-prone or not fault-prone software module for target data. The model is also able to predict fault-proneness degree of faulty module. The goal is to help software manager to concentrate their testing efforts to fault-prone modules in order to improve the reliability and quality of the software system. We used NASA projects data set from the PROMOSE repository to validate the predictive accuracy of the model.
منابع مشابه
Evaluation of Classifiers in Software Fault-Proneness Prediction
Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...
متن کاملPrediction of Fault-Prone Software Modules Using a Generic Text Discriminator
This paper describes a novel approach for detecting faultprone modules using a spam filtering technique. Fault-prone module detection in source code is important for the assurance of software quality. Most previous fault-prone detection approaches have been based on using software metrics. Such approaches, however, have difficulties in collecting the metrics and constructing mathematical models...
متن کاملEnhance Rule Based Detection for Software Fault Prone Modules
Software quality assurance is necessary to increase the level of confidence in the developed software and reduce the overall cost for developing software projects. The problem addressed in this research is the prediction of fault prone modules using data mining techniques. Predicting fault prone modules allows the software managers to allocate more testing and resources to such modules. This ca...
متن کاملEvaluation of Classifiers in Software Fault-Proneness Prediction
Reliability of a software counts on its fault-prone modules. This means that the less the software consists of fault-prone units, the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of a software, it will be possible to judge its reliability. In predicting the software fault-prone modules, one of the contributing features is software metric, by which...
متن کاملEmpirical Validate C&K Suite for Predict Fault-Proneness of Object-Oriented Classes Developed Using Fuzzy Logic
Empirical validation of software metrics suites to predict fault proneness in object-oriented (OO) components is essential to ensure their accuracy in practical industrial. In this paper, we empirically validate the Chidamber and Kemerer (CK) metrics suite metrics for their ability to predict software quality in terms of fault-proneness: we explore the ability of these metrics suites to predict...
متن کامل